
C H G - S O F T & M E D I A
N S C O P E R AT I N G S Y S T E M

SOFTWARE DEVELOPMENT KIT

NO INTERPRETER VERSION 1.29

AppWizard version 1.1.40
DisplayMaker.dll 1.0.0.4

Table of Contents

OVERVIEW.. 4
NSC FRAMEWORK.. 6
APPWIZARD..6

USAGE.. 7
Generated Code Framework.. 9
Special code before and after interrupts..9
Loop.c.h and ms.c.h... 10
Optional Private UART code... 10
Display Maker..12

GENERAL...17
GLOBAL CONSTANTS... 17
SYSTEM EEPROM MEMORY LOCATIONS...17

GLOBAL TYPES... 17
IO TESTING..18
KEYBOARD TEST MACROS...19

API - FUNCTIONS... 22
GENERAL...22
IO FUNCTIONS..24

OUTPUT Macros.. 28
Analog trigger...29
Analog level.. 29
Encoder...29

TIMING FUNCTIONS..30
DAILY-WEEKLY SCHEDULER..32
SCHEDULER FUNCTIONS.. 33
NETWORKING FUNCTIONS...35
UTILITY MACROS FOR NETWORKING...36

SFBP - NETWORKING..37
GLOBAL ADDRESSES... 37
SEND RETURN VALUES... 37
STANDARD CONTROL TYPES.. 37

GRAPHIC LIBRARY...39
LCDG specific..45

Global modifiers.. 46
String Commands and Structures..46

ERROR HANDLING..48
API - EVENTS.. 49

EVENT_CLICK..49
EVENT_LONGCLICK.. 49
EVENT_INPUT..49
EVENT_NET..49
EVENT_OUTCHANGE...50
EVENT_TIMER0 to EVENT_TIMER7..50
EVENT_ANALOG0...50
EVENT_INTERRUPT0, EVENT_INTERRUPT1,EVENT_INTERRUPT2..........................51
EVENT_ZEROENCODER..51
EVENT_SCHEDULER.. 52
EVENT_POWERDOWN... 53

EVENT_POWERUP.. 53
EVENT_KEYDETECTED...53
EVENT_TCHANGE.. 53

PUBEVENTS.. 54
CUSTOMIZE YOUR DEVICE...55

OVERVIEW

The NSC (Network Shared Control) operating system is designed to offer cooperative multitasking
event driven environment for embedded processors, with SFBP based networking support.
The basic version is designed for the ATMEL Mega series, and in particular for the ATMega32
processors.

The OS features the following functions, some of them can be selected as optional to reduce the
memory load.

- Event driven
- SFBP (Simple Field Bus Protocol) based networking with remote procedure call support
- Custom event
- Date and time with automatic DST
- Scheduler for logic or analog events
- Analog events
- Analog reading, with selectable number of analog inputs
- EEprom storage with simple read and write instructions
- Antibouncing for logic inputs, with integrated Input, Click and Longclick events
- Graphic, monochromatic display primitives (character based with some graphic capabilities)
- One wire reading for iButton and temperature sensors
- 8 timers
- Encoder A, B, Z counting algorithm
- Motor driver control
- Dimmer control
- Logic outputs including virtual outputs (non physically existing outputs)
- PWM output control

NSC FRAMEWORK

The NSC framework provides the O.S. and the framework to build on it your own application. The
application is made of a main initialization section, functions, events, public events, and an optional
loop control. All of them are detailed below.

AppWizard

The AppWizard is a desktop application that enables you to build your project, that can be
composed by one or more objects or devices.

This tool easily allows to select the desired options and prepares for you the structures for public
events and the related remote procedure call prototypes.

For devices equipped with a display it also allows to draw pages and chunks of text (Strings) to be
used to render the desired information on screen.

USAGE

Add a device (object)

1. Select one device from the top list.
2. Give it a device name. Serial number and address are generated automatically, though you can
change them. You can also enter a serial class number into the first box
on the left. All numbers will be automatically generated starting from
that serial number class.
Advanced: Optionally change the device ID. This is a rare necessity for special purposes.
3. On the right pane Project click the button Add to project . Now the new object is listed under the
project list.

4. Make sure the object is selected , then select the desired Options, select the desired Events .
5. You can also enter your own Public Events: enter the event name, select the number of arguments
that the event can accept, and enter the related argument names. For more information see
Pubevents. Once ready click Add to add the new public event to the list Defined Public Events (RPC) .

Add a new device

1. Click New device on Project on the right pane, follow the same steps listed above.

Create a new model

You may need to customize your own device model to suit your own hardware. To perform this
click on Model and then Your own models... menu.
Into the Model editor that shows up, enter a proper device ID that is different from any other, add a
model name, the hardware is based upon, and a descritpion.
Enter the device file name and path where you have stored the model's file. This should has .c.h
extension. See the chapter Customize Your Device to create a file starting from a template.
Select the available capabilities the device can support and the options you want to make available
when the model is selected in AppWizard.
Select what analog inputs are used (this is based on the ATmega32 or compatible processor).
Click Create/Save to finish or Cancel to exit.

Remark: The Model editor is mostly designed for ATmega32 or Mega series processors.

Modify a custom model

After you created a new model you may want to update or change or even delete it. Click on menu
Model and then Your own models... to display the Model editor, and make the desired changes. When
done click Create/Save to save changes, or Delete to remove the model altogether, or Cancel to just
exit doing nothing.

Enter a custom logo

Where the device has a display a custom logo can show up at startup. To select the logo click on the
logo box, and choose a proper file. Valid files are monochromatic BMP with size of 56x40 pixel
exactly. Once an image has been loaded loading another picture and cancelling the dialog box will
prompt a question whether you like or not to remove the logo.
The logo is common for the whole project.

Edit strings and pages

If the model device has a display you can create a collection of strings that will be used to draw
pages or print texts on screen.
Click button Edit Strings... the Display Maker will show up (see below).

Specific path and compiler

If you are editing your project's files in a different computer where the actual NSC-SDK and
compiler are located, you can enter the specific path into Project specific NSC-SDK path text box.
You can also select for which compiler it is meant. Options are ICCAVR or GCC. Auto provides an
automatic selection that normally is equivalent to selecting ICCAVR.
To access this configuration click on Project Specific Settings button.

Generating the project

Once done with all your devices in the project, options, strings, etc. you are ready to generate the
project.
Click on menu Generate and choose where the files should go. You can choose among Windows or
Linux style path, and whether the file should go into a single directory or into subfolders.

Generated Code Framework

The generated code is organized as follow.

Per each device up to ten files are generated. %%DEVNAME%% is a placeholder of each device name.

%%DEVNAME%%.c This file, is the entry point of your program. Other files *.c.h and
*.h will be included from here.
The USERPROGRAM_HDR and USERPROGRAM_C respectively define the
header and implementation files of your application. You will fill
your code into these specific files.

%%DEVNAME%%.c.h Where the code of your application lies.
%%DEVNAME%%.h Header of the code of your application.
vectors.h RPC vector file, this file is common for all the devices in a project.

You can pick from here the name for the vectors to be used in RPCs.

Your own code will go here:
%%DEVNAME%%.pvr.h private header for your own global variables, defines, and prototype

functions
%%DEVNAME%%.pvr-ini.c.h your own iniziatization, run one time at start up code goes here
%%DEVNAME%%.pvr.c.h implementation of your own functions
%%DEVNAME%%.evt.c.h your implementation of events and pubevents (public events)

Other special files:
%%DEVNAME%%.loop.c.h Optional, if specified in Options this file can hold the code that must

run into the main loop. Useful for polling functions.
%%DEVNAME%%.ms.c.h Optional, if specified in Options this file can hold the code that is

called by the system tick timer so it is processed every millisecond.
Useful to run processes at regular intervals.

Special code before and after interrupts

For custom code to be executed before, and or after interrupts are enabled the additional files should
be created including your code. Then uncomment the relative defines into %%DEVNAME%%.pvr.h :

• %%DEVNAME%%.inibfr.c.h file name for initialization code before interrupts are enabled,
also uncomment #define INCLUDEINIT_BEFOREINTERRUPTS .
• %%DEVNAME%%.iniaft.c.h file name for code to be executed after interrupts are enabled,
also uncomment #define INCLUDEINIT_AFTERINTERRUPTS .

Loop.c.h and ms.c.h

These two files are optionally used to include section of code that should run into the main loop and
into the main internal timer respectively.
In both cases care must be taken to avoid jeopardizing the OS operations. In particular the
millisecond code must be as short as possible.

Optional Private UART code

It is possible to manage directly the USART code for initialization, reception and transmission.

Private USART Initialization

In %%DEVNAME%%.pvr.h define PRIVATE_UART0_INIT
And in %%DEVNAME%%.pvr-ini.c.h write your initialization code.

Private USART receiving and transmitting code

In %%DEVNAME%%.pvr.c.h write your own function to receive and transmit data from USART.
You must also define PRIVATE_UART0RX_INT and PRIVATE_UART0TX_INT in %%DEVNAME%
%.pvr.h .

Private RX and TX code to include into the standard communication module.

Save your RX and TX code into a file (one file for RX another for TX) and in %%DEVNAME%%.pvr.h
add these defines:
#define INCLUDE_UART0RXINT_CODE "yourRXfilename"
#define INCLUDE_UART0TXINT_CODE "yourTXfilename"

Merge and initialization

After compiling, if it is required to merge the code with the bootloader and other optional
components specific for the device, Blender.exe can be used for the purpose: just pick up a project
for the same device as a template and change the code component and output file, eventually save
as new project.
The file generated by Blender.exe is an Intel HEX format suitable to be uploaded into the target
device.

If the application needs an initialized eeprom you may just use HexMaker.exe, enter the required
data and location to store data into the eeprom, and generate the hex file.

You can then use either AVRdude or the AVR ISP to send the generated file into the target device's
eeprom, as well as to send the final firmware in flash.

ICCAVR project configuration:

 Open Project > Options...
 Settings:
 Target: ATMega32 (or whatever the DEVICE requires)
 Program type: Application (bootloader: none)

We actually add a bootloader by merging the specific bootloader
with blender.exe but the application never start from the
bootloader because it is reserved for firmware updates only.

 PRINTF version: small
 String in flash only: CHECKED
 Return stack size: 64
 Other options: -bupfw:0x7010 -bwrjmp:0x7f00

The "other options" direct the compiler to reserve two symbols
for jumping into the bootloader which is merged with blender.exe.

AppWizard configuration

Click menu Options... The full path to the NSC framework
files should be found. Use the text box on top for Windows,
and on bottom for Unix/Linux. The installer should already
have filled the Windows path.

Display Maker

Display Maker allows to enter pages or texts to be displayed on the device's screen (where
applicable).

How to create a string

1. Enter an identifier name for your string, identifiers must have characters from a to z (upper and
lowercase) only, it can also begins and ends with square brackets '[' ']' to group it into an index (see
indexed strings below);
2. Into the text box at the bottom enter the string, this is the actual string command (see below);
3. Click add to declare to store the string, that will appear in the top-right pane of declarations.
It is not recommended to modify manually the strings into this pane, with the exception of deleting
a whole row to remove a cut and paste a whole row to move it up or down.

Closing Display Maker will automatically update the list of the strings into the AppWizard.

To edit a string already stored, click on "string ref. loaded " on the top-right corner (a hand cursor
appears when hovering) to display the list of strings, double click on a item to edit the related string.

Entering or editing a string

Type the string into the text box at the bottom. Strings not only contains text to display but also can
contain commands that the printing function interpret to format text or for other special purposes.

Figure 1: Display Maker

For simple formatting you can use C escapes syntax \r for carriage return or , \t for tab or ,
etc. To enter a slash, a single or double quotation mark it needs to be prefixed with another slash, as
in C.

\b or clears the line and won't work as backspace, while \n or advances to the new line
aligning on the left at the last move left position.

Other commands:

normal
text

under-
line

dotted
under-
line

format
large

invertedformat
number
variable

string
ref.
indexed

special
charac-
ter

move CR LF
new
line

clear
line

Tab clear
screen

select-
able
invert

select-
able
under-
lined

select-
able
arrow

end
select-
able
items

display
date

display
time

display
version

special characters as shown

Formatting commands remains active as long as they are not cancelled by the command normal text

.

Move command

The command moves the cursor (or insertion point) at the position specified. Following new line
commands will cause the text to advance by one line and move to left at the left position specified
by the last move command.

Clearing lines

The command clear line clears the whole line from the point in which it appears (the characters
before are unaffected). If a previous invert, underline or dotted underline formatting commands was
issued the line is cleared accordingly with that format. Example "\$invert;\b" creates a white band.

Formatting numbers from variables

Number can be formatted in serveral ways as shown by
the picture aside. Once inserted Display Maker put a
numeric placeholder at the position where the number
will be displayed.

You need to provide a number or a numeric variable as
argument to textOut function. AppWizard add clues to
help figuring out what argument is required when it
generates the strings into the strings section.

Example, if two numeric variables have been inserted
the function textOut is expected to receive those
variables as the same order they are displayed.
textOut(0, displaynum,

<decimal num>, <byte to BCD>);

Selectable items

Buttons allows to enter a command string to create a selection point that is
automatically handled. First choose the desired style of selection clicking one of the first three

buttons before each item, then after the last item click to revert to normal.

On the left is showcased a three selection member example, on the right the related string.

\xd2Selection:\r
\xd5item 1\r
\xd5item 2\r
\xd5item 3\$normal;

Notice that going to a new line in this text is for
reading purposes only, carriage returns are ignored and
only the \r escape is recognized.

Selectable items can be highlighted printing the text and giving the index of the current item
selected to the textOut function.

Example. The above example would generate this clue: "textOut(0, Selects, <cur. selected item>);"
so in your code you would make the following call, giving 1 <cur. selected item> to
highlight item 2:

textOut(0, Selects, 1);

with the result visible on the right:

Indexed strings and referenced embedded strings

You can create an array of strings that can be embedded into another string. The embedded string
can be indicized so the displayed text will match the indicized string.

To create an array of strings surround the identifier name with brackets. You can enter multiple
strings with different identifier names even non consecutively. All them will be gathered into a
single array of strings.

Example.
Two strings are entered with identifier name 'one' and 'two':

[one] = "item one";
[two] = "item two";

Now create a string that embeds the first item of the

indexed string, clicking on button and selecting
"one". The resulting string and related display will be
like this: displaysel = "Current: \#one;";

To print this screen Display Maker hints to use the following: textOut(0, displaysel, <index>);
where the argument <index> is any expression that returns a number between zero and the number
of items in the group - 1. So you may call the function this way:

textOut(0, displaysel, index);

Remarks: Because you may have different groups of indexed strings gathered together into the
same collection, it is important to enter the indexed strings in order, even though not necessarly
consecutively. For example, you may have a group that lists the selected item, and following a
group that lists the status:

[one] = "item one";
[two] = "item two";
[on] = "ON";
[off] = "OFF";

Then to show a string that displays the current status use something like:
 dispstatus = "status: \#on;";

If <index> is a number that goes beyond the boundary limit of the array of strings textOut ignores
the command and do not print the string to avoid a buffer overflow.
Caution: Indicized strings could contain formatted numbers or other indicized strings embedded, or
selectable items. However you cannot embed an indicized string that embeds another string or has a
formatted number or a selectable item as this would require nested arguments. When Display
Maker detects such a condition a warning is issued, and you should remove the reference to the
indicized string.

Overlapping texts and Pages

To create a page the first entry should be a CLS command to clear the screen and reset all
formatting commands. This ensures the following text is printed on a clean background.

However you can also print overlapped texts. This is useful in several cases, for example to display
a menu on top of the current screen. Or to update an indexed string.
To place an overlapped string on the correct location on screen consider starting the string with a
move command. This moves the string without affecting the background.
While you can also use Tab or CR for this purpose they wouldn't reset the horizontal and vertical
positions though.

Tip: For indexed strings that need to be printed on the same target location as referenced embedded
strings into a page, it could be useful to make all them of the same size, padding with spaces if
necessary.

Hold screen in background

When creating overlapped texts you can find useful to have view how the page would behave. For
this purpose first select the page which other strings would be printed on top, then press Hold screen

in background button. Now swicth to the overlapping string to edit. The page is retained in
background so you can have a better view where the text will go and the effect of the various
commands.
Remark: For simple visual purposes the held screen also reset the X-Y coordinates, but in a real
situation this couldn't be the case. Always consider to start a "transparent" overlapping string with a
move command.

How to display an overlapped menu

Create a string for the base page, make sure to start with CLS. Then make a new page with no CLS
(that is a "transparent" page) but with a move command to the location where the menu should be
printed. This last page could have selectable items in it. In such a case it is advisable to make the
item of the same size, padding them with spaces if necessary.

On code:
1. print the background page.
2. print the overlapping menu page.
If the selected item changes, repeat printing the menu page this time giving the new selected item as
argument of textOut (see above, Selectable items).
3. When done, to hide menu, print again the background page.

How to display an overlapped number (or numbers)

Suppose an application where some values need to be updated on screen.
You have two options:
a) Create the page with the number.
b) Create the background page, then create a string with the sole number (and move commands).

On code:
case a): Print repeatedly the page with the updated numbers.
case b): 1. Print the background page;

2. Print repeatedly the string (the "transparent page") with the sole updated numbers.

In (b) case the move command is required to position each time the number to print at the right
location on screen. Be sure to have padded numbers or preceed the number with a clear line or
spaces followed by a new move back.
Depending on the situation the option (b) could be faster and with less flickering, in particular if a
couple of number need to be printed. If multiple number need to be updated then the solution (a)
could be favorable.

Back to AppWizard

Once done with the strings you can go back to the AppWizard simply closing Display Maker: the
strings are automatically stored in AppWizard.

GENERAL

GLOBAL CONSTANTS

this The same device/object. It can be used everywhere a target or address or object
argument is required.

false 0
true 1
ON 1
OFF 0

Version info: VERSION_MAJOR VERSION_MINOR

DEBUGSEND(I1,I2,B1,ID)

Send debug information to the station address (1) via SFBP.
I1, I2 integer data
B1 byte data
ID must be a number between 0 and 30, it is send added to CTRLTYPE_USER

_tick

Global circular tick counter which is pseudo-random initialized. It is continuosly increased by the
base-time timer 0 interrupt so that it may be used for timing difference or as absolute number for
random numbers. Range: 0 - 255.

SYSTEM EEPROM MEMORY LOCATIONS

MEM_TIMEBASE Time storage.
From this location and above no user data should be stored or retrived.

MEM_ERRBASE Base location where error data is stored
MEM_LOCADDR Local address

GLOBAL TYPES

typedef unsigned char byte;
typedef unsigned char bool;
typedef void event;
typedef void pubevent;
typedef signed short VARVALUE;
typedef unsigned short UINTVAR;
-> typedef signed short EncoderValue_t;
-> typedef long EncoderValue_t; if LONGENCODER is defined

IO TESTING

Test a single bit (single IO by providing its number):

TESTIO(iodata, ionum)

iodata any IO buffer data provided by the event Input, Click, Longclick, Outchange
ionum number of the input to check. Inputs are enumerated starting by zero.

Macro operation: ((iodata) & (1 << (ionum)))

Test multiple bits (multiple IOs by providing their bits), this macro returns true if ALL the required
IOs are set. Caution: This does not work when the IOs to check must not be set.

TESTIOs(iodata, ios)

iodata any IO buffer data provided by the event Input, Click, Longclick, Outchange
ios group of bits each one representing one I/O, where bit zero is I/O zero

Macro operation: (((iodata) & (ios)) == (ios))

KEYBOARD TEST MACROS

When a 4 wires keyboard is connected to the inputs the following macros can be used in
conjunction with events click, longclick and input to check what keys has been pressed.
A 4 keys keyboard directly drives the inputs, so it is possible to check for combination of pressed
keys. On a 6 to 15 keys keyboard no combination of keys can be read.
A 4 wires keyboard should be connected to inputs 4, 5, 6, and 7.

4 wires constants

IO_KEYDW 0x0010 this is the v button in a 4 buttons keyboard
IO_KEYUP 0x0020 this is the ^ button in a 4 buttons keyboard
IO_KEYENTER 0x0040 this is the O button in a 4 buttons keyboard
IO_KEYCANCEL 0x0080 this is the X button in a 4 buttons keyboard
IO_KEYALL 0x00F0 any key

4 Keys Test Macros

ISKEYENTER(x) Return NZ if is pressed
ISKEYUP(x) Return NZ if is pressed
ISKEYDOWN(x) Return NZ if is pressed
ISKEYCANCEL(x) Return NZ if is pressed
ISANYKEYPRESSED(x) Return NZ if any key is pressed.
NZ = non-zero.

6 to 15 keys Test Macros

ISKEYCANCELD(x) Return NZ if Cancel is pressed
ISKEYENTERD(x) Return NZ if ENTER is pressed
ISKEYNEXTD(x) Return NZ if NEXT is pressed
ISKEYPREVD(x) Return NZ if PREV is pressed
ISKEYUPD(x) Return NZ if UP is pressed
ISKEYDWD(x) Return NZ if DW is pressed
ISKEYALTENTERD(x) Return NZ if ALT is pressed
ISKEYF1D(x) Return NZ if F1 is pressed
ISKEYF2D(x) Return NZ if F2 is pressed
ISKEYF3D(x) Return NZ if F3 is pressed
ISKEYF4D(x) Return NZ if F4 is pressed
ISKEYF5D(x) Return NZ if F5 is pressed
ISKEYF6D(x) Return NZ if F6 is pressed
ISKEYF7D(x) Return NZ if F7 is pressed
ISKEYF8D(x) Return NZ if F8 is pressed
ISKEYHOMED(x) Return NZ if HOME is pressed
ISANYKEYPRESSED(x) Return NZ if any key is pressed.

Usage example

event click(int Clicked)
{

if(ISANYKEYPRESSED(Clicked))
{

// a key has been pressed
}

// suppose this is a 16 keys keyboard
if(ISKEYF1D(Clicked)) {

// key F1 has been pressed
}

}

Numerical 15 keys keyboard

Numerical 15 keys keyboard (see also drawing) Line (U=up, D=down,
O=circle/enter, X=cross/cancel)

Macro Key name X O U D

ISKEYN0(Clicked) #0 1

ISKEYN1(Clicked) #1 1

ISKEYN2(Clicked) #2 1 1

ISKEYN3(Clicked) #3 1

ISKEYN4(Clicked) #4 1 1

ISKEYN5(Clicked) #5 1 1

ISKEYN6(Clicked) #6 1 1 1

ISKEYN7(Clicked) #7 1

ISKEYN8(Clicked) #8 1 1

ISKEYN9(Clicked) #9 1 1

ISKEYN_NEXT(Clicked) NEXT 1 1 1

ISKEYN_MENU_HOME(Clicked) MENU (PREV) / HOME (longclick) 1 1

ISKEYN_DW(Clicked) >> (DW) 1 1 1

ISKEYN_UP(Clicked) << (UP) 1 1 1

ISKEYN_CANCEL_ENTER(Clicked) CANCEL / ENTER (longclick) 1 1 1 1

ISKEYNUMBER macro allows to check if the pressed key is a number (0 to 9).
KEYNUMBER macro allows to get the pressed numeric key, example:

 unsigned char num;

 if(ISKEYNUMBER(Clicked)) {
 num = KEYNUMBER(Clicked); // num now contains the pressed number
 putnum((PRNTVALUE)num, 0);// print the number (if device has display only)
 }

Layout and electrical connections for a 15 keys numeric keyboard.

API - FUNCTIONS

GENERAL

int rnd(void)

Retruns a pseudo-random value.

void pwrsavebypass(unsigned short mask)

Set a mask of outputs that will not be saved when power save is invoked. Available with
USEPWRSAVEBYPASS only.

void _setTComp(signed char T)

Set temperature compensation. T must be between -128 and +127. Available with ONEWIRE only.

void glowlamp(void)

Lits up the display lamp. The lamp is automatically turned off after a while. Available with
GLOWDISPLAYLAMP display only.

void write(VARVALUE value, int location)

Writes value in EEprom at location, that can be zero to MAXMEM-1.
Also, location determines if the value must be written as byte or integer: if location has the most
significative bit set then the value is deemed as integer. Alternatively location can be combined
with _RW_INT_ to request writing an integer.
Data are stored from MEMSTORE.

VARVALUE read(int location)

Retrieve the value stored at location. This argument determines whether to retrieve an integer or a
byte: if the most significative bit is set in location then the value to read is deemed to be an
integer. This can be achieved by combining _RW_INT_ with location .

_DoTasks()

Yield control to task manager. This can be called if a function takes longer time to complete.
However caution should be used to not overwhelm the hardware stack and not to cause deadlock or
race conditions. In general it is not recommended to use this function!

Stack

void push(int data)
int pop(void)

Respectively push to and pop data from stack. These functions are available only if MAXSTACK is
defined. There is no way to know if the stack is full, or popped data is from an empty stack (in
which case pop returns zero).
In almost all cases MAXSTACK is never defined.

void ResetAll(void)

Broadcast a CTRLTYPE_CLEARERR and CTRLTYPE_REBOOT message to all units, and then
clear any error and reboot itself.

GLOWALRMLED;
DARKALARMLED;

Respectively lit up and turn off the alarm LED.

IO FUNCTIONS

int getIn(char channel)

Retrieve the status of the given input channel.

Logic inputs
- If the given channel is LOGIC or this or the local device's address, then getIn returns an array of
16 bits of the status of each logic input. Inputs that do not physically exist are set to zero.
- If the given channel is the address of a remote device, then the function returns an array of 16 bits
of the status of each logic input of the remote unit.
You can use TESTIO or TESTIOs to check for specific inputs.

Analog inputs (Only when HASANALOGICINPUT is defined)
If channel is
- ANALOGn where n is 0 or 1 for devices with up to 2 analog inputs;
- MANn where n is 0 to 7 for devices with more than 2 analog inputs, up to ANALOGCODECHANNELMAX;
then the function returns the value of the given analog inputs as a 16 bit integer.
NUMCHANNELS tells number of analog channel available. See also Reading ADC below.

Digital inputs (Only when DIGITALCODECHANNEL is defined)
If channel is
- DGTDATAn where n is 0 to 4 (or less than DIGITALCODECHANNELMAX) for devices with up to 4
digital inputs;
- MDDn where n is 0 to 7 (or less than DIGITALCODECHANNELMAX) for devices more than 4 digital
inputs;
then the function returns a 16 bit value of the digital (one wire protocol, i.e. temperature sensor)
input. You can also use DGTDATA + n instead of MDDn.

Remarks: It is possible to retrieve only logic inputs from a remote device. This is possible even if
the local device don't has inputs at all. If the remote unit fails to reply a _ERRRPCFAILED error is
issued and it can be handled using try and catch (see Error handling).

Reading ADC

By default getIn returns analog inputs with 8 bit resolution. Defining ANALOG10BITS it is possible
to retrieve inputs at 10 bit resolution.
Normally ADC is read and compared with triggers and 24V brown out detection at a rate of 1
millisecond per channel. Defining FASTANALOG moves the whole process into the main loop,
making each channel to be scanned at a rate of about 85µs with 8 bits resolution, and 90µs with 10
bits resolution.

Asynchronous ADC readings

Faster asynchronous reading can be achieved defining FASTANALOG and ANALOGINTERRUPT (both
defined). This makes the ADC reading asynchronous (through interrupt). However ANALOGx events
(if only 2 channels are used) are fired within the main loop at a rate of about 20µs.
For faster reading use getIn within file %%DEVNAME%%.loop.c.h (where %%DEVNAME%% is the name of
your device) and make sure LOOPINCLUDE is defined. INCLOOPTASKS can be defined as well to have

this loop inside the Task manager wich make the operations working even while some other tasks
are running.
An alternative is the use of a timer and put the reading routine inside its event.
Asynchronous ADC reading is incompatible with BRWN24 (24V brownout detection).

10 bits resolution

To increase resolution define ANALOG10BITS, this also requires FASTANALOG and ANALOGINTERRUPT
defined as well. Use the function: convert10Bit2Decimal to get a decimal representation of the
ADC data (see Graphic Library for details). Up to 8 analog channels can be read with this option.

12 bits ADC readings

Defining OVERSAMPLE_DECIMATION allows to add an Oversampling and Decimation algorithm to
virtually increasing the ADC resolution at 12 bits. With this option all ANALOG10BITS, FASTANALOG
and ANALOGINTERRUPT must be defined as well.
The increase in resolution is at expenses of speed that decreases by 16 times. So at best the updated
value for a given channel is possible after about 400µs to 1.4 millisecond.
Up to 8 analog channels can be read with this option. Use the function: convert10Bit2Decimal to
get a decimal representation of the ADC data, you also need HIPRECISION_HIRES_CONVERSION
defined (see Graphic Library for details).

Averaging

With OVERSAMPLE_DECIMATION it is also possible to have a mobile averaging by defining
AVERAGEADC. Average is spread over a cycle of 16 steps.

Direct ADC reading

Calling the function getIn could load some overhead. To avoid this use the following macro to
directly read ADC from the internal buffer: READANALOG(index) where index must be an unsigned
char with a value comprised between 0 and NUMCHANNELS-1 .
This macro returns the correct value at 8, 10 or 12 bits depending by the selected options.

Direct private analog scan

If PRIVATEANALOGSCAN is defined none of the ADC operations described above are
performed/available. No events are triggered, nor data is read from ADC, including the 24V
brownout detection. It is your own responsibility to create your procedure to scan analog inputs
where you deem better for your application if this option is defined.

ADC conversion speed

Default (8 bit) 8Ksps, full conversion: 124µs

FASTANALOG (8 bit, 10 bit and oversamp&dec) 16Ksps, full conversion: 54µs

FASTANALOG + ADC500KHZ (8 bit) 35Ksps, full conversion: 108µs

MACRO

GETDS1820TEMPERATURE(channel)

Get the DS1820 sensor temperature for the given channel. About channel it can be 0 to digital max
channel. The returned value is already converted into tenth of degree celsius, i.e.: 215 means
21.5°C.

unsigned int OUT(byte IOnum)

Returns the status of the given IOnum, which must be in range between 0 and 15. If the given IOnum
does not physically exist the function returns its virtual value.
If IOnum is 16 or above the function returns the whole array of bits with the status of all 16 outputs
(whether they are physical or virtual). You can then use TESTIOs to check for multiple outputs on a
single operation.

int getOut(byte Object)

Retrieve an array of all 16 outputs, whether they are physical or virtual, of the given object.
object can be:
- LOGIC, this or the local device's address: the function returns the local outputs.
- the address or device/object name of a remote device: the function returns the remote outputs.

You can use TESTIO or TESTIOs to check for specific outputs.

Remark: If the remote unit fails to reply a _ERRRPCFAILED error is issued and it can be handled
using try and catch (see Error handling).

byte setOut(byte target, byte argcount, ...) (see note)
byte setOut(int data, int mask, char target)

Set one or more outputs.
Note : This function comes in two flavours: the first one is when USR_USESETOUTVARG option is
selected, while the second one is when that option is unselected.

target destination device, it can be this, the device's local address or the address or a
remote device name.

argcount number of following arguments (see below). (USR_USESETOUTVARG only)
... (USR_USESETOUTVARG only) variable number of arguments holding the desired

outputs to set. Use ONn or OFFn respectively to set the output on or off, where
n is the output number in range between 0 and 15.
Example: setOut(this, 2, ON0, OFF3);

The following apply if USR_USESETOUTVARG is not selected only:
data array of 16 bits that defines the required output status: 0 off, 1 on.

Example: 0b101 set output 0 on, output 1 off, output 2 on.
mask array of 16 bits that defines the outputs that should be affected by the operation.

Example: 0b11 makes only outputs 0 and 1 to change, the remainder will be
unaffected by the operation.

Remarks: When USR_USESETOUTVARG is selected _setOut(data, mask, target) function is still
made available and can be used in the case of special needs.

Examples:

_setOut(IO2, IO0 | IO2, this);

Set IO0 off and IO2 on. Missing IOs on first argument are intended to be off.

#define PUMP IO0
#define LIGHT IO1
int outON; // hold outputs to set ON
outON = PUMP;
if(TESTIO(getIn(this), IN0)) outON |= LIGHT;
_setOut(outON, PUMP | LIGHT, this);

Defines PUMP and LIGHT outputs, set on PUMP and LIGHT if IN0 input is on as well. Then set
the intended outputs.

OUTPUT MACROS

the following macros call the underlying function _setOut.

setPWM(PWMchannel,value)

Set PWM channel to the given value. Value must be an integer within 0 to 1000 to change
modulation between 0 to 100% with a granularity of 0.1%.
PWMchannel can be either PWM_A or PWM_B.

Note: If this function is used when SERVO is selected as well, then only channel PWM_B should be
used, and the accepted value range changes from 0 to 1000 into 0 to 1999.

servo(speed,current)

Set speed and current limit if the device supports servodriver. When SERVO is selected the output
PWM_A is used, while PWM_B can be used with setPWM for other purposes.
With SERVO a tachometer feedback is expected at analog input AN0 (pin PA0 on ATmega32). The
voltage is normalized at 5V for the maximum speed. Analog input AN1 (pin PA1 on ATmega32) is
expected to receive the current in a normalized range of 0 - 5V.

Parameters:
speed integer value between 0 to 1999
current current cutoff limit set in range of 0 to 255 (max current)

Remark: When SERVO is selected the value to give to setPWM for the free channel PWM_B changes
from 0 to 1000 into 0 to 1999.

dimmer(value,dimmerChannel,target)

Set dimmer (phase fire control PFC, or phase partialization control), if the device support PFC.

Parameters:

value value in range between 0 and 20 (full on), or 40 for hi-res dimmer.
dimmerChannel channel to control, it can be DIMMECHn where n can be 0 to 3, anyway up to

DIMMERNUMCHANNELS. You can also use BASEDIMMECH + n .
target destination device, it can be either this or the device's local address or

the address of a remote unit.

ANALOG TRIGGER

void setAnalogTrigger(char lowerLevel, char higherLevel, char channel)

Set an analog trigger that will make the event Analogn (where n can be 0 or 1) to be fired if the
analog input goes beyond the set levels.

lowerLevel lower threshold level below which the event is fired.
higherLevel higher threshold level above which the event is fired.

Remark: Available only if USEANALOGTRIGGERS is selected. Higher and lower levels set the
hysteresis: the event will be fired if the level goes below lowerLevel if it went above the
higherLevel, and above higherLevel if it went below the lowerLevel. Calling again
setAnalogTrigger resets the event so it would be fired even if it didn't trespassed the opposite
threshold.
Not available if NUMCHANNELS is greater than 2 and if ANALOG10BITS is defined.

ANALOG LEVEL

If in place of USEANALOGTRIGGERS is selected ANALOGLEVEL then an automatic event is fired each
time one of the analog inputs change. To reduce the sensitivity ANALOGSENSITIVITY can be defined
and ANALOGSENSITIVITYVALUE defined to a value comprised between 0 (lowest sensitivity that
ignores the lower four bits) and 4 (maximum sensitivity: no bits are ignored).
Example: #define ANALOGSENSITIVITYVALUE 2

Remark: This option takes one byte of RAM per channel, an additional byte per channel is taken if
ANALOG10BITS is defined as well.

ENCODER

EncoderValue_t encoder(char reset)

Returns the encoder counter's value, and optionally resets the counter. See also zeroencoder event.

reset ENCREAD the encoder counter's value is returned, no further action is taken.
RESETONZERO the counter value returned and sets the zeroencoder trigger. After this
as soon as the zero pulse happens the zeroencoder event will be fired.
RESETNOW both zeroencoder trigger and counter are cleared.

Return: the value of the internal counter, this could be a signed short integer, or a long integer if
LONGENCODER is defined.

Remarks: Available only if HASENCODER is selected. If LONGENCODER is selected then the returned
value is a signed long integer.

Encoder limitations

Because of the speed limits of the processor the maximum readable frequency is capped at 5KHz
for a three channel A-B-Z encoder.

TIMING FUNCTIONS

void setTimer(unsigned short interval, byte timerID)

Set timed interval. The timer runs independently if not cancelled by calling setTimer with
interval set to zero. When the timer expires a timern event is fired (where n is 0 to 7).

interval number of tenth of seconds, up to 65535 (1h 49' 13".5) the timer will expire.
If CENTISECOND option is defined then the timer expires 10 times faster.

timerID ID of the timer, this must be TIMERn where n is between 0 and 7.

Remarks: Calling setTimer with zero interval cancels any pending timer of the same timerID.
To get proper interval you can used macro makeTimerInterval(h, m, s, t) where h can be zero or
1, m can be 0 to 59, s can be 0 to 59 and t can be 0 to 9. Maximum is (1, 49, 13, 5) .
Becasue this is a macro, given values are not checked and you should ensure they are within the
limits or a variable overflow may occur.
If CENTISECOND is defined then the interval is in cents of second. Also NUMCENT_TIMERS should be
set to the number of cent timers required, that must be less or equal to all 8 available timers.
With CENTISECOND the maximum time is 10':55".35 you can use makeTimerCentInterval(m, s, c)
to built a suitable value giving the interval in minutes (m), seconds (s) and cents of second (c).

unsigned short getTimer(byte timerID)

Get the remaining time of the given timer timerID.
If DATETIME is selected current time can be retrieved as follow:
GET_SECOND
GET_MINUTE
GET_HOUR

GET_DAY_WEEK returns a combined day and weekday, use FILTERDAY to extract the day
and FILTERWEEK to extract the weekday.
Example:
byte myday = FILTERDAY(getTimer(GET_DAY_WEEK));
byte myweekday = FILTERWEEK(getTimer(GET_DAY_WEEK));

GET_MONTH

GET_YEAR

GET_SECOND can be used as a base index, example to retrive the full date and time:
byte mytime[6];
for(i = 0; i < 6; i++) mytime[i] = getTimer(GET_SECOND + i);

Also with DATETIME the following macros can be used:
GETCURTIME_M returns a UINTVAR of the current time, in minutes (seconds are ignored).
GETCURTIME_S returns a UNITVAR of the current time, within the current hour, in seconds.
Example: UINTVAR mycurtime = GETCURTIME_S;

void setDatetime(int year,byte month,byte wday,
byte hour,byte minute,byte second)

Set date and time. Day can be incorrect and the function will try to automatically adjust the day.
To combine day with weekday setweekday(weekday,day) can be used, however it is not
necessary as just providing the day the function will automatically set the matching weekday.

Using time

Use the type m_time to declare a variable that must hold time. The global variable gTime hold the
current time and can be used to make a copy of the current time. You should avoid to directly
change this variable, though. Use setDatetime instead.

m_time is a union with two members:
 tc holds date and time as byte array
 t holds date and time with members: second, minute, hour,

day and weekday, month, year (within century)

DAILY-WEEKLY SCHEDULER

The OS offer an optional scheduler for programmed operations. The following lists the relevant
functions.

The scheduler is available only if enabled and only on devices that have time clock enabled and
available as hardware component.

The scheduler handles scheduled events on daily basis over a weekly cycle. You can enter rules
based on the time of the day, and for each day of the week. Each rule has a value that can be used
either bitwise or as byte data. Per each time and day of the week up to four types of rules can be
defined. All types work in parallel.
Rule types can be used to set weekly rules that apply to different operations. For example to control
activations on different zones.

The scheduler works with the internal time, that you can use in conjunction with the timing
functions setDatetime and getTimer.

The scheduler supports exception rules, that apply separately for each rule type. Exception rules
take control on day-month basis. For example, you can enter an exception to the rule of type 1 that
is valid from day 2 to day 25 of July, and set a specific value that apply while the exception rule is
in force. For more information see scheduler event.

The scheduled data are stored in EEPROM, starting from the location defined by PTREXCSCHED
which is where the pointer to the exception table is located. This two-bytes pointer points to the
beginning of the day-month exceptions table.

Below is shown how the table of records is organized in memory. ET means End of Table bit, N
means Null (zero).

pointer to the
exception table

daily-weekly
scheduler table

end of table day-month
exceptions table

end of table

MSB LSB E
T

N N N N N N N E
T

N N N N N N N

2 bytes 4 bytes per record 1 byte 4 bytes per record 1 byte

The daily-weekly scheduler table is made of 4 bytes per record, with a single byte that marks the
end of the table.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

N N minute type hour N S
u

S
a

F
r

T
h

W
e

T
u

M
o

value

days

byte 0 byte 1 byte 2 byte 3

The day-month exceptions table is made of 4 bytes per record, with a single byte that marks the end
of the table.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

N N N start day start month end month type end day value

byte 0 byte 1 byte 2 byte 3

SCHEDULER FUNCTIONS

byte getSchedRecord(unsigned char* index, byte type, unsigned char* rdata)

Retrieve a scheduler record of the given type.
Arguments:

index pointer to progressive index of the record to read, this will be updated by
the function if a matching record type is found.

type type of record to read, it can be 0, 1, 2, 3. Only records of the required
type are read.

rdata pointer to an array of four bytes that will be filled with the record data
Return: 1 upon successful record read, 0 if the end of table is met and no more record are available.

Use example:
// retrieve all records of type 2:
byte ix = 0;
byte rec[4];
while(getSchedRecord(&ix, 2, &rec)) {

// do something with the record
}

Remarks:
The updated index can be used with deleteSched. Index could be non-consecutive as different
record types can be inserted in between. To dump the whole table use readSched.

byte getSchedException(unsigned char* index, byte type, unsigned char* rdata)

Retrieve an exception record of the given type from the scheduler.
Arguments:

index pointer to progressive index of the record to read, this will be updated by
the function if a matching record type is found.

type type of record to read, it can be 0, 1, 2, 3. Only records of the required
type are read.

rdata pointer to an array of four bytes that will be filled with the record data
Return: 1 upon successful record read, 0 if the end of table is met and no more record are available.

Remarks: Scheduler exceptions cannot be deleted using deleteSched, nor new entries can be
achieved using insertSched. You need to write the specific code to handle the exception table or use
an external software to retrieve and send the table over the network.

void insertSched(byte value,byte hour,byte minute,byte stype,byte days)

Insert a new schedulation. The insertion is made automatically. Required values:
value scheduled data value, it can be bitwise or an 'analog' value in range 0-255.
hour, minute hour and minute at which the daily schedulation must happen over the week.
stype schedulation type.
days Bitwise, days when the schedulation apply. Bit 0 is Monday, bit 6 is Sunday.

Remarks: The function inserts a new schedulation in progressive order, only if no event exists. If an
event having the same type, days and time already exists, the value is updated. If an event having
the same time, value and type already exists then the days are updated. No new schedulation is
inserted if another one with type, days, time and value already exists.

void deleteSched(byte index)

Removes the schedulation at index. If no event exists the function does nothing. To get a proper
index the function getSchedRecord can be used.

void freezeScheduler(byte type, byte set)

Freezes the scheduler for the given type.
type type of programme to freeze/unfreeze, it should be in range between 0 to 3.
set 0 unfreeze, non-zero freeze.

The frozen schedulation type overrides the scheduled events and exceptions for that given type.

Comments.
The frozen schedulation becomes inactive but it is not stopped. If a scheduled event happens on a
frozen schedulation, the event is ignored and not fired.
Past events happened while the schedulation was frozen are lost, but the next day (over the
programmed days) may get a chance to be fired if the meantime the schedulation is unfrozen. This
wouldn't happen if an exception event is met, though.

ResetSched;

Reset overrides and timetable events pointer, restaring the scheduler.

byte readSched(int location)

Read an item at the required location that can be any address from PTREXCSCHED to MEMSCHED.
PTREXCSCHED is where the pointer to the table of exception is located, it is made of two bytes MSB
first. The scheduler table begins from STARTSCHED.
Returns a data byte.

void writeSched(byte value, int location)

Write a schedulation byte into location, which can be any address from PTREXCSCHED to
MEMSCHED. PTREXCSCHED is where the pointer to the table of exception is located, it is made of two
bytes MSB first. The scheduler table begins from STARTSCHED.
Once written, the function also restart the scheduler.

NETWORKING FUNCTIONS

byte send(byte target, int data, int mask, byte type)

Send to target a packet.

target address of the remote recipient of the message.
data, mask application specific data.
type type of message, see CTRLTYPES in the SFBP section below.

Return: The function returns either SENDRESULT_OK, SENDRESULT_BUSY or SENDRESULT_FAIL.

Messages are normally sent as connected packets.
If ctrlType is given as CTRLTYPE_USER_DATA the message is sent as a data message, otherwise is
sent as control message.
The message is always sent as connected. If the recipient is BROADCASTADDR or ctrlType has
CTRLTYPE_SYSTEM bit set, then the message is sent as datagram.
In case of datagrams no ACK is requied from the remote peer, so the function is faster even though
the message could be lost.
If target is set to BROADCASTADDR then the packet is sent as datagram and no response is expected.

unsigned char SendCTRL(unsigned char dest,
unsigned short dat,
unsigned short mask,
unsigned char id,
unsigned char ctrlType)

Similar to send but allows to send a message ID as well. The message ID is used in RPCs and
pubevents to transmit/receive the function's vector, but it can be used for other purposes when
sending private messages.

dest address of the remote recipient of the message.
dat first data, this resolves into the first two bytes of the message.
mask second data, this resolves into the following two bytes of the message.
id message ID, it is sent as the fifth byte of the message.
ctrlType this must be one CTRLTYPE.

If ctrlType is given as CTRLTYPE_USER_DATA the message is sent as a data message.
The message is always sent as connected. If the recipient is BROADCASTADDR or ctrlType has
CTRLTYPE_SYSTEM bit set, then the message is sent as datagram.
With datagram messages no ACK is expected after they are sent over the network.

Return: The function returns either SENDRESULT_OK, SENDRESULT_BUSY or SENDRESULT_FAIL.

char RPC(byte target, byte vector, byte argcount, ...)

Execute a remote procedure call firing a pubevent.
target address of the remote device where the procedure must be executed.
vector vector of the procedure, this can be retrieved from the file vectors.h .
argcount number of arguments (see below)
... arguments: this can be none, one or up to four arguments as follow:

up to two arguments: each argument must be of type short;
three arguments: first one must be of type short, the following two must be of type byte;
four arguments: each argument must be of type byte;

Examples:
RPC(target, vector, 0);
RPC(target, vector, 1, short);
RPC(target, vector, 2, short, short);
RPC(target, vector, 3. short, byte, byte);
RPC(target, vector, 4, byte, byte, byte, byte);

The matching pubevent should accept arguments accordingly. See also pubevent.

Remarks: Available only if USR_USESETOUTVARG is selected. This function can be used in
conjunction with setsync and wait (see Utiliy Macros for Networking).

SendData(sndaddr, opcode, data, len, packettype);

Send generic SFBP packet. This could be used to reply to a remote peer application specific
command either in an pubevent or inside the net event to return one or more packets of data using
the following syntax:

unsigned char mdata[DATABUFLEN];
// ... fill here mdata with some data ...
// send mdata back to the remote peer whose address should still be in the
// received packet: packet.srcAddr. Message is sent as datagram (not connected)
SendData(packet.srcAddr, OPCODE_DATA_PACKET, mdata, DATABUFLEN, TYPE_DATAGRAM);

UTILITY MACROS FOR NETWORKING

setbusy force busy status response for incoming requests.
resetbusy reset busy status.
setsync set synchronization before calling RPCs, RPC automatically clears this flag.
resetsync clears the synchronization.

wait wait for synchronized RPC completion.
This will call the underlying _wait() function, making the process to halt until a CTRLTYPE_OK
message is not received from the remote peer or the busy flag is not cleared (see resetbusy), or a
timeout (up to 8 second) happens. If timeout happens the function returns after having recorded an
errRPCFailed error that can be read either using Catch or getErr functions (see Error Handling
section).

sendOK(target) send to target OK response. Use this if you want to free the sending device
from waiting the completion of the called procedure. You don't need to use this macro as the OS
automatically send OK back to the caller once the procedure exits.

SFBP - Networking

GLOBAL ADDRESSES

BROADCASTADDR 0 Broadcast send/receive
1 Typical station address (i.e. computer or SCADA)

GW_ADDR 127 Gateway address
MAXADDR 128 First out of range address, max muber of addresses.

SEND RETURN VALUES

SNDBUSY Network is busy, retry later.
SNDFAIL Failed to send the message, either no response from peer or bad request.
SNDOK Successfully sent the message over the network.

STANDARD CONTROL TYPES

Coded standard control types for control packet sent among units.
The control type is the last byte in a standard packet of DU length of 6 bytes. Based on the SFBP
standard the meaning of Type is application related, and from that point of view the NSC O.S. is
itself an application.
Therefore the type byte is shared between the OS and the user application, so that the
CTRLTYPE_USER and the CTRLTYPE_USERD base types, by 84 user defined values, are available for
user private purposes.

CTRLTYPE_USER_DATA 0 user defined or system packet with meaning of data packet
(not ctrl packet)

CTRLTYPE_SETTARGET 1 set target where to send ctrl packets (see sendtarget as well)
CTRLTYPE_SETOUT 2 set output with received first two bytes as data and following

two bytes as mask
CTRLTYPE_DUMPERR 5 send back the error stored in eeprom, if any
CTRLTYPE_GETIN 6 send back the last status of inputs
CTRLTYPE_GETOUT 7 send back the last status of outputs
CTRLTYPE_RPC_0PARAM 8 remote procedure call, zero parameters
CTRLTYPE_RPC_MAXPARAM 12 max count of arguments for RPC equal to

CTRLTYPE_RPC_0PARAM+4
CTRLTYPE_SYSTEM 0x80 bit set used for system controls

packet sent via SendCTRL with the highest bit set are
considered as NON System but interpreted to be sent as
datagrams.

CTRLTYPE_USER 43 user defined ctrl packets, connected - available range:
CTRLTYPE_USER + 84

CTRLTYPE_USERD 141 user defined ctrl packets, datagram - available range:
CTRLTYPE_USERD + 84

226 and up, system packets as following:

CTRLTYPE_IOSTATE 234 firmware version 1.19 and above will return I/O status if
settarget is nonzero with this message instead of
CTRLTYPE_INSTATE and CTRLTYPE_OUTSTATE

CTRLTYPE_RPCSYNC 235 set a flag to syncronize the following RPC
CTRLTYPE_FIRMWAREUPLOAD 236
CTRLTYPE_POWERRESTORE 237 message which notify that power can be restored
CTRLTYPE_POWERSAVE 238 message to ask for power save
CTRLTYPE_RCLICK 239 remotable click
CTRLTYPE_SETSERIAL 240 set the serial code (only in non SMALL)
CTRLTYPE_GETSTORE 241 send back 5 byte of data stored in eeprom memory, beginning

from the location specified by the first two bytes (LSB, MSB);
the byte 5 returned hold the length of data (0 to 5)

CTRLTYPE_OK 242 sent in response to a sequenced operation such as the one
required by CTRLTYPE_STORE

CTRLTYPE_STORE 243 require to store the following data packets in eeprom
CTRLTYPE_PRGSTATE 244 reprogram response, only if PFLASH is defined (program

in flash)
CTRLTYPE_RSTADDR 245 reset address to null
CTRLTYPE_OUTVALUE 246 sent if settarget has been set to return the value of an output

(i.e. dimmer)
CTRLTYPE_INSTATE 248 in response to getIn (or for setTarget) a packet with this type

is returned
CTRLTYPE_OUTSTATE 249 on out change if settarget has been set, or in response to a

getout, a packet with this type is returned
CTRLTYPE_GETSERIAL 250 send back the serial number and current address
CTRLTYPE_SETADDR 251 set address by serial number
CTRLTYPE_CLEARERR 252 clear error block memory
CTRLTYPE_REPROGRAM 253 set to program memory with next received data packets,

data specify how many packets are expected
CTRLTYPE_REBOOT 254 reboot device, and stops the user program if first byte is set

to 63 (and can only be resumed by clearing error followed by
a reboot). If the first byte is set to 55, first stops and reboot,
then (with a second message) it is fully stopped, that means no
identification messages are sent over the network.

GRAPHIC LIBRARY
(When included for devices with display capabilities)

char* appendbuf(char* buf, const char* src, unsigned char start)

Append to the given buffer buf, at the start position, the string from the src constant buffer (in
flash). If start position is 255 then from the given buffer the zero terminator is searched for and the
src string is appended from there.
If buf is NOT initialized start MUST be given and set to zero.
Return: the modified buffer.

Comment: This function is useful if you want to manipulate a string that is located in flash. Use
appendbuf either to copy or append into the given buffer one or more strings.

unsigned char flashRead(unsigned int i)

Read from flash at the given location i.
Return: a byte read from flash.

void drawbar(unsigned char size, unsigned char div, unsigned char row, unsigned
char col, PRNTVALUE value)

Draw a bar gauge
This function is available only if DRAWBARS is selected or defined. It is possible to specify
HORIZONTALBARS or VERTICALBARS to enable only one of the two modes, making the code slighly
smaller.

Arguments:
size Width or height of the bar, must be 1 to 20 characters or 1 to 6 rows.

It can be combined with CENTERBAR or VERTBAR.
row, col Position of the bar, in characters.
div DIVBYTE 255 if the value is between 0 to 255;

DIVPERC 100 if value is between 0 to 99 (0-100%)
value Value of the bar, it could be in range between 0 to 255, or 0 to 100%,

or in pixels (compared to the width of the bar).

PRNTVALUE is a short (16bit) or long (32 bit) if PRINTLONG option is set.
Argument size can be combined with CENTERBAR
(ex.: width | CENTERBAR) to create a centered bar. In such a case value
is expected to be a signed integer, example from -50 to +49.
Alternatively size can be combined with VERTBAR to draw a vertical bar. Vertical bars cannot be
with centered zero, if you combine both CENTERBAR and VERTBAR the result is unpredictable .

If DRAWBARSIGNS option is selected as well, bars with CENTERBAR are also drawn with + - signs.
If value is in range between 0 and 255 then DIVBYTE should be given to div; if it is in range of 0 -
100 then DIVPERC should be given to div; if it is in pixels the range should be the same value given
for size.

void drawPixels(unsigned char* data, unsigned char arraysize)

Available only if DRAWBARS and VERTICALBARS are defined. Draw at
the current cursor position a memory bitmap. The bitmap cannot span
beyond a single row, but can span multiple characters. To draw over
multiple rows, send an array of bits per each row.
The bitmap must be provided as a series of vertical lines of pixels.
Each byte represent a vertical line of 8 pixels (see figure).
The function does not change the cursor position.

void movecur(unsigned char row, unsigned char col)

Move the cursor to the given row and column, in characters.

unsigned char GLgotoX(unsigned char p)
unsigned char GLgotoY(unsigned char p)

Respectively move the current cursor position to p along X and Y axis, in pixels.
Return: 1 success, 0 the required position is outside the allowed space.

void GLbitmapOut(tagGLbmpOutInfo* bi)

Draw a bitmap
Arguments:

bi BitmapInfo structure:
 adrBmp address in flash where the bitmap bits are stored.
 x, y coordinates where the picture must be placed on the display.
 width, height The size of the bitmap. Only width by height bits will be read from

the bitmap bits file and blitted out to the display.
If width is set to zero the bitmap width and height are read from the
file, and the adrBmp should point not just at the beginning of the
bitmap bits, rather at the beginning of the bitmap file.

void _putchar(unsigned char ch)

Print a character to the LCD at the current location.

void textOut(char* t, const char* tf, ...)

Draw a text at the current X,Y position
Arguments

t pointer to a buffer which hold the text to draw, this member can
be a NULL pointer if the tf member is provided.
Strings pointed by t must be of type ASCIIZ (null-terminated).

tf If t is NULL, tf must be a const pointer to a flash string containing the text to draw.
If this member is zero, then the t member must point to a valid buffer.
The string pointed by tf must be of type ASCIIZ.

... Optional variable number of arguments (see notes).

Remarks:
The text is drawn at the position set by the GLgotoX/Y functions, if a LF character is met, the line is
reset to the current X position as it was at when calling this function (no reset to zero). This leave
the text aligned to the left, where 'left' is the last X position.

Notes:
If the string to print expects arguments you should provide them after tf, in the same order as
required by the string.
Additional arguments are required when using:

type of element embedded into the string number of arguments argument type(s)

embedded indexed strings 1 (unsigned) char

selectable items, to indicate the currently
selected item

1 (unsigned) char

numeric placeholders 1 PRNTVALUE

Important: you should provide the correct variable type, internally the function extract the
argument for the type as listed above.
If your data is signed or unsigned cast the value into the required format.
Example, print an unsigned short data (it is assumed the string has an absolute numeric
placeholder):

unsigned short data;
data = 44500; // assign a value to data
textOut(NULL, pMyString, (PRNTVALUE)data);

CAUTION: textOut requires USR_USESETOUTVARG option!

WARNING: TO SAVE MEMORY NO CHECK IS DONE HERE HOWEVER YOU SHOULD NEVER CALL THIS
FUNCTION WITH NUMERIC OR STRING PLACEHOLDERS OR ESCAPE FORWARD EMBEDDED CONTROL
CHARACTERS IN THE STRING TO PRINT BY GIVING AN ASCIIZ POINTER SINCE THIS OPTION IS
AVAILABLE ONLY WITHIN THE SYSTEM CODE.

PRNTVALUE convert10Bit2Decimal(unsigned short value, unsigned char options)

This function is available only if ANALOG10BITS is selected, thought it is available even if no analog
inputs are enabled.

Converts the given value expressed as 10 or 12 bits integer into a proportional decimal value. This
is useful to convert data read from ADC either at 10 or 12 bits.

This function compile differently whether HIPRECISION_HIRES_CONVERSION is defined or not. If
this option is defined the code takes about 80 more bytes once compiled, but improves the
conversion error.

Conversion errors:
option other options Range and conversion errors

Default -
Value range: 0÷1023.
Max conversion error: 2%
Max error over the full range: 0.01%

HIPRECISION_HIRES_CONVERSION

Default
Value range: 0÷1023
Max conversion error: 0.2%
Max error over the full range: 0.01%

OPTCONVERT_12BITS
Value range: 0÷4092
Max conversion error: 0.33%
Max error over the full range: 0.03%

OPTCONVERT_12BITS
+ OPTCONVERT_499

Value range: 0÷4092
Max conversion error: 1.32%
Max error over the full range: 0.04%

options selects the conversion reference:
OPTCONVERT_UNSIGNED 0 Converts and returns the given value as unsigned integer (default).

OPTCONVERT_SIGNED 1 Converts and returns the given value as signed integer where zero is at
the middle:

512 for 0÷1023 range (10 bits);
2046 for 0÷4092 range (12 bits);

The returned value is thus in range -5000 ÷ 0 ÷ +4999 .

OPTCONVERT_12BITS 2 Evaluates the given value as 12 bit integer (from oversampling and
decimation). The accepted value is thus in range between 0 and 4092.
Without this option the accepted range is up to 1023.

OPTCONVERT_499 4 Returns the given value converted from 0÷4092 to 0÷5000.
It requires OPTCONVERT_12BITS .
If OPTCONVERT_SIGNED is also defined the result is a negative range:
-5000 ÷ -1 .

Return:

The function returns a four digits and half decimal signed integer value comprised between 0 and
9999, or +4999 and 0 and -5000 if OPTCONVERT_SIGNED is given as option.
The returned value can be passed to textOut or putnum with mode = MODENUMCENT or MODENUMDEC
or MODENUMMILL (millesimal) .

void putnum(PRNTVALUE value, unsigned char mode)

Put a number on screen at the current cursor location.
Parameters:

value the numeric value to display
mode display mode:

MODENUMNORMAL 0 default mode, display number as is
MODENUMABSZERO 0x80 Absolute representation, do not show sign (will void the place

required for sign as well, so the number is tightly aligned to the left).
If combined with a digit count, unfilled digits on the left are filled
with leading zeroes.
Not compatible with MODENUMHALFBYTE.

MODENUMABSSPACE 0xA0 Absolute-space This option is a combination of 0x20 and 0x80,
making it incompatible with MODENUMHALFBYTE.
Same as absolute described above, however unfilled digits on the left
are filled with spaces and not with zeroes.

MODENUMHALFBYTE 0x20 Half byte. Converts number from 0 to 127 as negative number from
-500 to 0; and from 128 to 255 as positive number from 1 to 499.
The number can be displayed with one, two and three decimal digits.
This mode has meaning only for values in a byte range.
NOT compatible with 0x80 Absolute option (see 0xA0 above) .

MODENUMBYTE 0x40 Byte to decimal (255/10) range display mode, the number is
converted from its range of 0-255 to the related range of 0 - 999,
the number can be displayed with one, two and three decimal digits.
Useful to display voltage values read from the analog inputs.

MODENUMDEC 0x08 show number with one decimal (as if the value is divided by 10).
MODENUMCENT 0x10 show number with two decimals (as if the value is divided by 100).
MODENUMMILL 0x18 show number with three decimals (as if the value is divided by

1000). Note this is the combination of MODENUMDEC and
MODENUMCENT mode flags.

Digits

Last 3 LSbits:

0 to 7 Digits (NUMFILTERDIGITS) fixed digits count, this defines a space to
show the number keeping it aligned to the right in relation to the
number of digits defined by this member, void places to the left are
filled with blanks (deleting the background).
The count does include the fixed place for the sign, if allowed.
Therefore if absolute mode is set, the count must be one less then
what it would be if no absolute mode were set.
If this is zero then no padding is made to the left of the number, and
the number is printed aligned to the left.

Remarks:
Various modes may be combined, but the MODENUMABSZERO, MODENUMABSSPACE and
MODENUMHALFBYTE options that are mutually exclusive. The MODENUMHALFBYTE is not compatible
with numbers that not fall within the range of 0 to 255.
Absolute (unsigned) mode, removes the default blank on the left side of the number that is
otherwise inserted for positive numbers (if SHOWPLUSSIGN is defined a + is shown in place of
blank).
Combining Digits and Absolute will display the number with leading zeroes when the number is
smaller for the given number of digits.

Combining MODENUMDEC, MODENUMCENT, MODENUMMILL makes the number to be shown with
decimals. Digits and decimals can be combined as well. Decimals can be combined with all other
modes.

If SEVENSEGMENTS option is selected then numbers with attribute _BOLD_
are printed as seven segment digits (no plus sign is printed, though). The
size of each digit takes twice the size (both in height and width) of regular
characters, decimal point is embedded in digits so it doesn't take any space.

Example:

// Print value from DS1820 temperature sensor.
// Multiply by ten to get temperature with
// one decimal, divide by two because DS1820 returns value in half degrees.
// Display mode with one decimal digit, and force to take space
// for almost 6 digits.
putnum((PRNTVALUE) getIn(DGTDATA0)*10/2, MODENUMDEC | 6);

clearline(startX, endX, line)

This macro calls the internal function specific of LCDG:
void GLclearline(unsigned char startX, unsigned char endX, unsigned char line)

Clear a line from startX to endX, in pixels for the given line. If this function is called after the
$invert or $underline options are set, the line is cleared inverted and/or underlined.
On 64x128 displays startX and endX must be between 0 and 127, while line must be from 0 to 7.
On exit the function moves the cursor at zero.

void cls(void)

This calls the internal function specific of LCDG:
void GLclear(void)

Alias: LCD_CLEAR
Cleare the whole screen. Also it resets all format settings.

void showicon(int iconID, byte X, byte Y)

Draw the icon at the iconID location in flash, at the X and Y position on screen. The position must
be in pixels, from 0 to 63 for Y and from 0 to 127 for X.

LCDG SPECIFIC

void drawicon(unsigned int id)

Draw an icon at the current cursor position. id must point to the address of a valid
tagGLbmpOutInfo in flash.

char* cpybuf(char* buf,const char* src)

Copy into the given buffer buf the data from an ASCIIZ string pointer src from flash.

Global modifiers

SetUnderline Set to print text underlined. All subsequent calls to textOut,
putchar and putnum are affected. Use SetNormal to remove this
setting.

SetDotsUnderline As above but underlines are dotted. If NEGATIVEUNDERLINE option
is defined this will print overlines in place of underlines.

SetBold Set to print bold (enlarged) text. All subsequent calls to textOut,
putchar and putnum are affected. If SEVENSEGMENTS is defined
putnum will display large, seven segment display style numbers.

SetInvert Set to print inverted colors text. All calls to textOut, putchar,
putnum are affected.

SetNormal Reset all settings and print normal text. textOut, putchar and
putnum are affected.

STRING COMMANDS AND STRUCTURES

Commands to display the selected item in a itemized print

escape sequences (to be inserted into strings):

_RESET_ITEMSCOUNT_ requires one argument given to the function textOut to provide
the currently selected item, usually put at the beginning of the
itemized string.

ITEMINVERT
ITEMUNDERLINE
ITEMRIGHTARROW

binary representation:
B_RESET_ITEMSCOUNT_
B_ITEMINVERT_
B_ITEMUNDERLINE_
B_ITEMRIGHTARROW_

Indexed strings points to a string from gTextCollection array and the provided argument (to
textOut) offsets to the next strings in the array. The value passed to the macro must be one based
and as hex value as string, i.e. "\x01" which points to the first string in the array.
(escape sequences:)
_INDXSTR(id)
INCSTR

Move cursor
Move cursor, is made by \x1b followed by one digit for the row and one or more digits for the
column followed by semicolon, i.e.: \1b018; would move at row=0 and col=18
_MOVECUR(row,col)

Clear a line of text
CLEARLINE

NUMBER PLACEHOLDERS

digits is the number of digits to show, or an encoded string that provides the number of digits and
the number of fixed digits (plus sign).
This string must be entered as a decimal value for simple number of digits (i.e., for _NUM_CENTABS),
or as a hexadecimal value where the identifier requires a composed string: example
_NUM_ABS_ZEROPAD(\x44) indicates four fixed digits and two decimals, encoded.

escape sequences (to be inserted into strings):

_NUM_NORMAL(digits)
_NUM_DECIMAL(digits)
_NUM_CENT(digits)
_NUM_HALFBYTE(digits)
_NUM_BCD1K(digits)
_NUM_BCD100(digits)
_NUM_BCD10(digits)
_NUM_ABS_ZEROPAD(digits)
_NUM_DECABS(digits)
_NUM_CENTABS(digits)
_NUM_ABS_SPACEPAD(digits)
_NUM_HEX(digits)
_NUM_MILLESIMAL(digits)

Hex and Millesimal are alternatively interpreted depending by whether SHOWHEXNUMFORMAT is
defined or not.

Structures

typedef struct
{
 unsigned int adrBmp;
 unsigned char x;
 unsigned char y;
 unsigned char width;
 unsigned char height;
} tagGLbmpOutInfo;

x, y, height and width in pixels, adrBmp is the address in flash.
Bitmaps must be stored with the XBM format.

ERROR HANDLING

void Try(void)
unsigned char Catch(void)

Used to catch possible errors that certain functions may raise by calling raiseException (see below).
Catch returns the raised error, or zero if no error was raised, and resets the Try block. The error
buffer is not cleared. See also getErr.

unsigned char getErr(void)

Retrieve the last error code, zero if no error. Calling the function also clears the error buffer. See
also Catch.

Catch or getErr are useful with RPCs to check for any possible error.

void raiseException(unsigned int errorCode)

Custor exception raised. This function raises an error and errorCode is stored into the error buffer.
If a Try function was called before calling raiseException then if the errorCode is greater than
errUNRECOVERABLE the function simply stores the errorCode into the error buffer.
Otherwise in both cases where Try was not called or errorCode is smaller or equal to
errUNRECOVERABLE the function also halts and restart the processor which will enter into an alarm
status that must be cleared (using a CTRLTYPE_CLEARERR message) before restarting again normally.

You can use this function to record an error or a severe error that should halt the operations and
bring the user's attention to the device by checking its error calling CTRLTYPE_DUMPERR .
Once the device entered into an unrecoverable error it won't restart normally again until a
CTRLTYPE_CLEARERR message is not received.

Error list
errStackOverFlowed 7
errRcvProgramError 8
errFLASHFAIL 9
errINVALIDPROGRAM 11
errHwStackOverflowed 12
errFLASHFAILURE 13 severe flash failure (read back written data doesn't match

current data buffer used to write)
errUNRECOVERABLE 19 max error number below of it any error is considered

as unrecoverable
errRPCFailed 21
errREADDRESS 240 not an error, set when a readdressing is issued, this error

is reset if a new program is then uploaded
errSTOPPED 241 device is full stopped, so no signal is sent when I/O changes

occurs, anyway this value is never stored in the error registry
in eeprom, so that it is cleared as soon as a reboot is called.

errVirgin1 254 same as virgin, but serial code has been set.
It means never progrogrammed.

errVIRGIN 255 this mean no error was written to eeprom and is interpreted
as VIRGIN device!

API - EVENTS

All listed events are available only if selected in AppWizard.

EVENT_CLICK
event click(unsigned int Clicked)

Fired when one or more logic inputs go up and then down within 2 seconds.
Clicked 16 bit array representing the inputs that have experienced the click event.

You can use TESTIO to check which input has been clicked, example: TESTIO(Clicked, IN1).
This event is fired even when a 4 - 5 keys keyboard is connected (see Keyboard macros)

EVENT_LONGCLICK
event longclick(unsigned int Clicked)

Fired when one or more logic inputs go up and stay up for longer than 3 seconds, and then go down.
Clicked 16 bit array representing the inputs that have experienced the longclick event.

You can use TESTIO to check which input has been clicked, example: TESTIO(Clicked, IN4)

EVENT_INPUT
event input(unsigned int IN, unsigned int HIN, unsigned int LIN)

Fired when one or more logic inputs have changed.
IN 16 bit array representing the status of each input.
HIN 16 bit array representing the inputs that have gone up.
LIN 16 bit array representing the inputs that have gone down.

You can use TESTIO to check which input has been clicked, examples:
if(TESTIO(IN, IN4)) /* check whether input 4 is high or low */;
if(TESTIO(HIN, IN2)) /* check if input 2 has changed up */;
if(TESTIO(LIN, IN0)) /* check if input 0 has changed down */;

Caution: this event is always fired when an input changes, even if the event is then deemed to be
click or longclick.

EVENT_NET

event net(int data, int mask, byte id, byte type, byte sender) (with EXTENDEDNET)
event net(int data, int mask, byte type, byte sender)

Network event. The first version is available only if EXTENDEDNET is selected.
Fired when the device receives a valid packet targeted to its address, or a broadcast message.

data first couple of bytes of data: first byte LSB, second byte MSB.
mask second couple of bytes of data: first byte LSB, second byte MSB.
id (only with EXTENDEDNET) message ID (typically sent with RPCs).
type message CTRLTYPE.
sender address of the remote peer that sent the message.

EVENT_OUTCHANGE
event outchange(int changed)

Fired when one or more logic outputs change, either because of the user program or because a
remote peer commanded to turn on or off one or more outputs.

changed 16 bit representation of the outputs. Changes on virutal outputs shall fire
this event as if they were actual physical outputs.

You can use TESTIO to check which output has changed, example: TESTIO(changed, OUT3)

EVENT_BUTTON
event button(byte btn)

This event is available only if LCDH (non graphic LCD device or equivaled device with 12+ keys
keyboard, not to be confused with LCDGH which refers to the graphic LCD) is selected.
Fired when a button is pressed by the user.

btn index of the pressed button

Rem: This event is not actually fully implemented.

EVENT_TIMER0 TO EVENT_TIMER7
event timern(void) where n is 0 to 7

Fired when the related timer expires.
Remark: Calling setTimer(0, TIMERn) (where n is 0 to 7) cancel the timer if it is not yet expired.

EVENT_ANALOG0

Available only if ANALOGEVENT is selected.
BEWARE analog events may be called at a steadfast frequency!

event analog0(int channels)
//event analog1(int value) deprecated, this event is no longer available.

Fired when the read value from the related analog input goes beyond the set threshold, be it above
the higherLevel or below the lowerLevel. See also setAnalogTrigger .

Alternatively this event is fired when one of the analog input changes if ANALOGLEVEL is selected in
place of USEANALOGTRIGGERS.

The argument channels is a bitwise that provides the channels of the analog inputs that caused the
event.

Example:

event analog0(int channels) {
unsigned int data;

if(channels & AW0) { /* channel 0 changed */ }
if(channels & AW5) {

/* channel 5 changed, get its data */
data = getIn(ANDATA + AW5);

}
}

Remark: The argument is cleared once the event return.

EVENT_INTERRUPT0, EVENT_INTERRUPT1,EVENT_INTERRUPT2

Available only if INTERRUPTASEVENTS is selected.
event Interruptn(unsigned int IntInputs) (where n is 0 to 2)

Fired when the corresponding interrupt is triggered.

IntInputs provides the status of the inputs subject of interrupt, when the
interrupt had happened.

EVENT_ZEROENCODER
event zeroEncoder(void)

Available only if HASENCODER is selected, and if the device support the encoder.
This event is fired when its trigger is set and the Z channel of the connected encoder goes down.
This means the encoder must provide a normally high output, falling when the zero position is
reached. To set the zeroencoder trigger call encoder(RESETONZERO); function.

Remark: When HASENCODER is defined both interrupt 0 and 1 are used for reading the signals B and
Z (respectively) coming from the encoder. The interrupt0 is set to be fired at each variation of the
input, while interrupt1 is set to be fired when the input goes low.

See also: encoder function.

EVENT_SCHEDULER
event scheduler(byte type_exc,

byte type_clr,
byte value0,
byte value1,
byte value2,
byte value3)

Available only if SCHEDULER is selected.

This event is fired when a scheduled event happens. Because multiple events could happen for
different rule types, a value is provided for each type.

Arguments provided:

type_exc Rule type, and exception type. Up to four types may happen. Each bit
represent a type, the upper 4 bits represent the exception types while the
lower 4 bits represent the scheduled rule types. If the bit is set it means the
related rule or exception has occurred.
Keep in mind that more than one type could happen at the same time, with
each own value (see below).

bit 7 6 5 4 3 2 1 0

excep.
type 3

excep.
type 2

excep.
type 1

excep.
type 0

rule evt.
type 3

rule evt.
type 2

rule evt.
type 1

rule evt.
type 0

type_clr Exception cleared event. Each bit represent an exception type that has
expired (the exception is no longer in force). Only the upper 4 bits are
meaningful. If the bit is set it means that the related exception type has been
cleared. The related provided value is the one that was there before the
exception occurred.

bit 7 6 5 4 3 2 1 0

excep.
type 3
ended

excep.
type 2
ended

excep.
type 1
ended

excep.
type 0
ended

value0 to value3 Rule or exception value. value0 is for type 0, value1 is for type 1, and so
on. The provided value is meaningless if there is no bit set for the related
rule, exception or cleared type.

Remarks: For a given type, if its bit is set on more than one section then exceptions override rules,
and rules override cleared exceptions. So for example if type_exc = 0b10001000 then value3 is
meaningful but as exception, and the exception status prevails.
If type_exc = 0b00001000 and type_clr = 10000000 then value3 contains the value of rule
type 3, since the rule prevails on the cleared exception. However type_clr provides information
that the exception type 3 has ended as well.

EVENT_POWERDOWN
event powerdown(void)

Fired when the device detects a power down condition or a powersave message is received.
If the device is already in powersave mode the event is not fired.
Once this event is fired the device is already in power save mode, which means the relay outputs are
released to save power, however the output status is preserved in memory. If any change occurs
while in power save the relay outputs won't change but the changes are nevertheless memorized so
they can be restored when the power comes back.
While in power save the output change notifications are ignored.

EVENT_POWERUP
event powerup(void)

Fired when the device detects a power up condition. This means the power is went back to normal
level continuatively for almost 15 seconds, or the device receives a power restore message.
This event is not fired if the device is not in power save mode, and when this event is fired the
device has already exited from power save mode. When this event happens the outputs are restored
to the status they should have had, in other words the outputs are restored taking in account of the
changes occurred while in power save mode.

Remark: Powerdown and powerup events are available on certain devices only and when powered
both via mains and battery. The event is fired when the voltage goes below (or above) 18V, but
remains above 6V via batteries.

EVENT_KEYDETECTED
event KeyDetected(byte k0,byte k1,byte k2,byte k3,byte k4,byte k5)

Available only if ONEWIRE and IBUTTONPIN are selected.
Fired when a iButton key is placed on its receptacle and recognized by the device. The event
provides the key as six bytes argument from k0 to k5.
The provided arguments can be used to match against one ore more stored keys.

EVENT_TCHANGE
event TChange(int temperature,byte item)

Available only if ONEWIRE is selected.
Fired when a temperature change of almost 0.5°C happens.

temperature temperature read by the sensor.
item number of sensor, on single sensors this member is always zero.

This event is available only when digital temperature sensors DS1820 are used (over OneWire).
The provided temperature value must be converted. For DS1820 sensors the conversion follow this
formula: int T = temperature * 10 / 2; This way the converted value is multiplied by ten, so
for example 21.5°C is converted into 215.
The value of 170 (0xaa) means the sensor is faulty or not responding or not connected.
Because the sampling frequency of the sensor happens at a pace of 20 second, this event won't be
fired at a shorter interval.

PUBEVENTs

Public events (pubevent) are events that can be fired through RPCs or just by calling them into the
code, as for normal events or normal functions. In fact you can call even the events into your code,
as they are just functions that return void.

Pubevents are private, application specific functions that you can implement into the PUBEVENTS
SECTION into the devicename.evt.c.h file (§ PUBEVENTS IMPLEMENTATION).

Example

Suppose we have two devices, one named DisplayU and the other named CtrlU.
From CtrlU upon the event input the public event inside DisplayU is called, sending the status of
the inputs. At DisplayU the public event provides a notification on screen printing the status of the
inputs from the remote unit CtrlU.

Inside DisplayU we've implemented the public event ActionTwo, which accepts two arguments.

///
// PUBEVENTS IMPLEMENTATION
///

pubevent ActionTwo(int arg1, int arg2, byte caller)
{

// print on screen the string actiontwo_received
// which in turn prints also two numbers
textOut(0, actiontwo_received, arg1, arg2);

}

Inside CtrlU into event input we've implemented the remote call to DeviceU, giving the status of the
input that changed high, and low.

///
// EVENTS IMPLEMENTATION
///

#ifdef EVENT_INPUT
event input(unsigned int IN, unsigned int HIN, unsigned int LIN)
{

// call ActionTwo on DisplayU
RPC(DisplayU_ActionTwo_VECTOR, (int) HIN, (int) LIN);

}
#endif

CUSTOMIZE YOUR DEVICE

Into the NSC-SDK folder you may find the folder Devs, inside it you can find a file named
usertemplate.c.h .
Use this file as a boilerplate to create your own device file, simply changing the code where
specified. In short this file tells how GPIO are mapped, including for special functions such as One-
Wire or Encoder.
In addition you have to change the GPIO input/output, direction and pullup initialization, and the
HAL PortIN and PortOUT functions that translate the GPIO into the Status Input and Status Output
16 bit values, so that the physical INx or OUTx match with the logical INx or OUTx into the
program.

Give to your file with a proper name that must end by .c.h and save it into the UserDevs folder.

Once you prepared your device file you need to add the device to the list of available devices.
Start NSC App Wizard, click button New Model .

Into the form that pops up enter a unique device ID for your new device (start from 100, up to 255
you have room for 155 devices). Enter a device name, a name or code of your device's hardware,
and an optional description.

Into the field device file enter the filename and full path of the file you just saved, example:
 C:\CHG\NSC-SDK\UserDevs\mynewdev.c.h

Then select the capabilities of your device, in other words what it supports.

Select the option you want to make available.

Finally enter an optional pipe (|) separated list of fixed defines required by your program for this
device. Suppose your device need a couple of fixed defines 'MYDEF1' and 'MYDEF2', enter here
(without spaces): MYDEF1|MYDEF2

If the device has analog inputs, click button Analog Channels to enter the number of available analog
channels.

To complete the operation click Create/Save .

Now your new device is available on the list of devices of AppWizard.
If you can't find the device in the list it could be the list was locked: Close and restart the
application to allow it to release the list and reload it.

	OVERVIEW
	NSC FRAMEWORK
	AppWizard
	USAGE
	Generated Code Framework
	Special code before and after interrupts
	Loop.c.h and ms.c.h
	Optional Private UART code
	Display Maker

	GENERAL
	GLOBAL CONSTANTS
	SYSTEM EEPROM MEMORY LOCATIONS
	GLOBAL TYPES

	IO TESTING
	KEYBOARD TEST MACROS

	API - FUNCTIONS
	GENERAL
	IO FUNCTIONS
	OUTPUT Macros
	Analog trigger
	Analog level
	Encoder

	TIMING FUNCTIONS
	DAILY-WEEKLY SCHEDULER
	SCHEDULER FUNCTIONS
	NETWORKING FUNCTIONS
	UTILITY MACROS FOR NETWORKING

	SFBP - Networking
	GLOBAL ADDRESSES
	SEND RETURN VALUES
	STANDARD CONTROL TYPES

	GRAPHIC LIBRARY
	LCDG specific
	Global modifiers
	String Commands and Structures

	ERROR HANDLING
	API - EVENTS
	EVENT_CLICK
	EVENT_LONGCLICK
	EVENT_INPUT
	EVENT_NET
	EVENT_OUTCHANGE
	EVENT_TIMER0 to EVENT_TIMER7
	EVENT_ANALOG0
	EVENT_INTERRUPT0, EVENT_INTERRUPT1,EVENT_INTERRUPT2
	EVENT_ZEROENCODER
	EVENT_SCHEDULER
	EVENT_POWERDOWN
	EVENT_POWERUP
	EVENT_KEYDETECTED
	EVENT_TCHANGE

	PUBEVENTs
	CUSTOMIZE YOUR DEVICE

